

Appears in

Proceedings of the First International

Conference on Artificial Intelligence Planning

Systems

, College Park, Maryland, 1992.

Abstract

Work-in-progress on the design of a conditional

nonlinear planner is described. CNLP is a
nonlinear planner that develops plans that

account for foreseen uncertainties. CNLP

represents an extension of the conditional
planning technique of Warren [75] to the domain

of nonlinear planning.

1 Problem

Most classical AI planners develop unconditional
sequences of actions. Observations of the environment

during plan execution have no effect on the sequence of

actions executed during the course of that plan. In many
planning domains, it is desirable to develop a plan that

takes advantage of observations made during plan

execution to select the actions that are executed. This is a
conditional plan. The actions in the plan are conditioned

on observations made prior to their execution.

A conditional plan is necessary when uncertainties in the
environment or in the results of actions preclude the

selection of a single course of action to accomplish a goal.

A conditional plan tests the environment to determine
whether a planned sequence of actions is appropriate or

not. Rather than replanning at runtime, the conditional

planner develops a set of plans for every projected
contingency. Note that this is not quite the same as

reactive planning. A conditional planner develops plans

that are reactive only to a few predicted sources of
uncertainty. Reactive planners improvise solutions at run

time as uncertainties, predicted or unpredicted, arise. A

conditional plan does not exhibit the ‘persistent goal-

Conditional Nonlinear Planning

Mark A. Peot

Stanford University
Department of Engineering-Economic Systems

Stanford, CA 94305

peot@rpal.rockwell.com
(415) 325-7143

David E. Smith

Rockwell International
444 High St.

Palo Alto, CA 94301

de2smith@rpal.rockwell.com
(415) 325-7162

seeking behavior’ of a reactive plan [Schoppers 89]. Still,
a conditional planner may develop good plans for those

predicted sources of uncertainty because it considers the

effects of actions on several possible futures
simultaneously. For example:

–A conditional planner can prepare for contingencies
by ensuring that items needed for the execution of
more than one possible plan branch are collected when
it is convenient to do so. (Example: “I better take
something to do in case the coffee house is closed.”)

–A conditional planner can avoid “painting itself into a
corner” by considering the impact of actions on the
feasibility of contingency plans. (Example: “I’m glad
that I remembered to bring an extra key!”)

–A contingent planner can consider explicitly the bene-
fit of seeking out and observing information. In con-
junction with a decision-theoretic plan evaluator, it can
identify the optimal information collection policy by
implicitly calculating the value of information
[Howard 66].

2 WARPLAN-C

Warplan-C [Warren 76] uses a simple approach for

developing conditional

linear

 plans. Certain of the actions
that comprise a plan are tagged as conditional. Conditional

actions have two possible outcomes P or

¬

 P. During the

first planning pass, the planner assumes that all of the
conditional actions are unconditional with a single

outcome P. Warplan-C attempts to develop a plan using

one branch of each conditional and then reinvokes the
planner to plan for each dangling ’else’ branch. This is

illustrated below.

Figure 1:

 Operation of Warplan-C

The planner develops an unconditional plan assuming that
the conditional action has outcome P (Fig 1.a.). After such

a plan is found, the planner is reinvoked to plan for the

other branch of the conditional. The initial segment used
for this plan is the initial segment of the previous plan

except that the conditional action is replaced by an action

whose preconditions are the protected conditions of the
initial segment that were used by action 3 or the goal. The

outcome of this new action is

¬

 P (shown in Fig 1.b). A

new plan is found for this branch of the conditional (Fig
1.c) and the result is combined with the original plan to

form the final conditional plan (Fig 1.d). Note that actions

can be added before the conditional action in order to
satisfy the ’else’ part of the conditional (for example, step

4 in Fig 1.c, 1.d). Also note that Warplan-C makes no

attempt to fuse the branches of the conditional plan.

3 Conditional Nonlinear Plans

The planner that we are developing is a conditional

version of the Systematic Nonlinear Planner (SNLP)

[McAllester and Rosenblitt, 91; Soderland and Weld, 91].
In the following discussion, we will describe enough of

the terminology to understand an extended example. The

complete description of the planner follows the example.

An

operator

is a STRIPS operator [Fikes+Nilsson, 71].

Operators are used to describe actions. An operator

consists of a set of preconditions and a set of
postconditions. We do not use an add and a delete list.

p

G

¬ p

S

2

3

S

2

G

C
4

G

S

2

5

¬ p

4

G

S

2

5
p

¬ p

G

3

a. b. c. d.

Instead we use three truth values for P. P may be true,

false or unknown denoted by P,

¬

 P, and

Unk(P)
respectively.

Actions may have several different, mutually exclusive

sets of outcomes for postconditions. The operator

Observe

 (described below) has two possible outcomes:

either the road from x to y is clear or it isn’t. The

postconditions associated with a single greek letter are
mutually exclusive and are collectively exhaustive.

Exactly one of the sets of postconditions denoted by

α

1

...α

n

 are observed. We will call this type of action a

conditional action.

(Observe (Road ?x ?y))

 Pre: Unk(Clear ?x ?y)

 (at ?x)

 +

α

1

: (Clear ?x ?y)

 +

α

2

:

¬

(Clear ?x ?y)

A plan

step

is what we call an operator when it appears in
a plan. A step is identical to an operator except that it is

tagged with labels representing the action’s

reason

and the

context

. Reason contains the list of goals that the plan step
contributes to. Context captures the set of events in the

environment that the action is conditioned on. An action

may be executed in a plan if the observations made during
execution thus far are consistent with the context of that

action. Reason and context will be described more fully

later in the paper.

A

causal link

is a triple <E, P, C> where P is a proposition,

E is a step that has P in its postcondition, and C is a step

that has P as a precondition. We will refer to E as the

establisher

of the condition P and refer to C as the

consumer

of that condition. A causal link represents a

commitment that the P precondition of step C will be
satisfied by a postcondition of step E and that no other

action should interfere in the time between the execution

of C and E. Causal links are sometimes referred to as

protection intervals

.

A

conditioning link

 is a triple {A,

α

, B} where A and B are

actions and

α

 is a condition. Action B may not be executed
unless the outcome of action A is

α

.

An

ordering constraint

is a constraint on the order of two

steps in a plan. (McAllester calls this a

safety condition

.)
A > B means that A must be executed at some point after

B is executed. There are ordering constraints implicit in

causal links and conditioning links. C > E in the causal
link <E, P, C> or the conditioning link {E,

 α

, C}.

A

conditional plan

consists of a set of steps, reason and

context labels for those steps, a set of ordering constraints,
a set of bindings for variables in the plan, a set of causal

links and a set of conditioning links.

4 Overview of CNLP

The following simple example demonstrates the operation
of our nonlinear planner, CNLP.

Let’s say that our objective is to ski. In order to ski, we

need to get our skis and drive to a place that has a ski
resort. In the simple example diagrammed below, there are

only two ski resorts, Snowbird and Park City (abbreviated

S and P). It is possible that the road from B to S or the road
from C to P will be covered with snow. All of the other

roads are clear. If the road is snow covered then it is

impassable. If the road from B to S or the road from C to
P is snowed in, then we can observe this fact from B or C

respectively. There are three operators in this domain: the

Observe operator described above, (Drive ?x ?y) and (Get
Skis). In order to drive from x to y, we must be at x when

the action is executed and the road from x to y must be

clear. In order to get our skis, we must be at home. Our
goal is to be at a resort with our skis: (At ?x) and

(Resort ?x) and (Have Skis). Note that it may not always

be possible to achieve the goal.

Snowbird

Home

B

Park City

C

The planner starts with two dummy operators. The first

operator,

IC

, has the initial conditions as its
postconditions. The second operator has preconditions

corresponding to the conjunctive clauses of the goal. We

call our first attempt to instantiate the goal G

1

. Initially, the
context for G

1

 is true. This means that we expect to derive

a plan that results in the goal being satisfied in every

context. The planner works by adding causal links from
actions to

open conditions

, resolving conflicts whenever

they arise. An open condition is a precondition that has not

been established through a causal link. There are two ways
of adding a causal link to a plan. The first,

add-link

1

,

 adds

a causal link between an existing action and an open

precondition.

Add-step

adds a new action to a plan. The
other planning operators resolve conflicts between pieces

of the plan.

The figure on the next page illustrates a conditional
nonlinear plan that solves the example problem. IC and the

links from IC to other nodes have been omitted for clarity.

Solid lines, dashed lines and thick lines represent causal
links, ordering constraints and conditioning links,

respectively.

CNLP is a nondeterministic planner much like SNLP
[McAllester+Rosenblitt 91] or TWEAK [Chapman 87].

This type of planner nondeterministically selects a

completions for incomplete plans. We will not attempt to
describe how a nondeterministic planning algorithm

works and assume that the reader is familiar with

[McAllester+Rosenblitt 91, or Soderland+Weld 91].

The plan consists of three different conditional branches

corresponding to the case when the road from

b

 to

s

 is

clear, the case when

b

 to

s

 is not clear and the road from

c

to

p

is clear and the case when neither road is clear. These

branches are labelled with the contexts

α

1

,

α

2

β

1

, and

α

2

β

2

respectively. The actions that comprise a given
conditional branch are labelled with the context of that

conditional branch. There is a separate goal attempt for

every conditional branch. No attempt is made to merge
branches after they split.

1

We have borrowed the names for most of our planning operations from
[Soderland+Weld, 91].

Before discussing the planner itself, we’ll discuss

some of the unique features of a conditional nonlinear
plan. The first is that actions are tagged with reason

and context labels. Consider the action

(get skis)

.

This action has a context of ‘true’ and a reason G

1

G

2

.
A context of ‘true’ in this situation means that the

action can be executed regardless of the result of any

observations made during plan execution. Reason
G

1

G

2

 means that the action is used in the first and

second attempts to achieve the goal. There is no need

to execute an action if the goal actions in its reason
become impossible to achieve. When this happens,

the action is no longer necessary for any of the goal

attempts that are still feasible.

An action like

(Observe (road b s))

 has multiple

possible outcomes. The outcomes are each labelled

with a unique identifier called an

 observation label.

Subsequent actions that depend on this observation

are tagged with a context that contains an observation

label from this action. For example,

(go b s)

has a

context containing

α

1

. This means that

(go b s)

 should

only be executed when the observation denoted by

α

1

,

(clear b s)

, has been observed.

The contexts are also used in determining whether a

postcondition of an action can clobber a causal link. There
is no need to resolve a clobberer if the clobberer and the

causal link that it clobbers never occur together in the

execution of a plan. The consumer of the causal link and
the potential clobberer must have

compatible

contexts in

order for a conflict to occur. A new method for resolving

clobberers suggests itself. A conflict may be resolved by
restricting the contexts of the clobberer and the consumer

of the causal link so that these two actions can never occur

together in a valid completion of the plan.

The planner starts by attempting to a plan for the initial

goal attempt G

1

.

During planning for G

1

, its context

becomes something other than true. This means that the
goal attempt G

1

 cannot be achieved in every completion of

the plan. When this happens the planner attempts to

Figure 2

-- A conditional nonlinear plan for skiing.

(at home)

(get skis)
(go home b)

(obs (road b s))

(at b)

 (clear b s)

¬ (clear b s)

α1 α2

(at s)

G1

(have skis)

(resort s)

(go b s)

r:
c:α1 G2

(resort p) (at p)

(obs (road c s))

(clear c p) ¬ (clear c p)

β1
β2

(go c p)

(at c)

(go b c)

r:G1, G2
c: t

r: G1
c: α1

r:G1G2
c: t

r:G1G2
c: t

r:G2
c: α2

r: G2
c: α2

r: G2
c: α2β1

r:
c: α2β1

4.

Unk(clear b s)
¬ (at home)

1.

Fail

r:
c: α2β2

G3

achieve the goal in another way. It adds another dummy

goal operator, G

2

, and attempts to achieve G

2

 using only
new actions and actions that are consistent with some

unexplored context in the plan. This context becomes the

global context

for the planning process. Adding new goal
operators rather than fusing all of the branches into the

same goal node simplifies the planner, particularly when

the planner uses variables. In the skiing example, the
actual variable bindings are different in G

1

 and G

2

. G

1

 is

the goal for skiing at Snowbird and G

2

represents the goal

for skiing at Park City. The global context is used to
control the process of adding links to previously planned

steps in the plan. A link may only be made to a plan step

that has a context that is compatible with the global
context. For example, if we are planning for the case

where

α

2

 is true, then we should not be able to link to a

plan step that is conditional on

α

1

 being true since

α

1

 and

α

2

 can never become true at the same time.

Finally, there is no possible plan that accomplishes the

goal when both roads are blocked. We cannot count on the
planner terminating in this situation since planning is

undecidable [Chapman, 87]. We suggest that some upper

bound be placed on the cost of the steps that can be added
to a plan in order to accomplish a particular goal. When

this bound is exceeded, the plan branch is considered

impossible to achieve. We annotate the plan with a

Fail

operator that has as its precondition the observation(s) that

could not be tied into a plan that accomplishes the goal.

Fail

satisfies all of the preconditions of the goal that it
corresponds to. In this case,

Fail

 is linked to all of the

preconditions of G

3

, the goal that is impossible to achieve.

The context for the Fail operator is set to the current global
context. When the plan is executed, the Fail operator

signals that it is no longer possible to pursue the goal.

5 CNLP

In this section, we make the definitions suggested in the
example more formal and define the planner. For

simplicity, we will ignore variable bindings. The planner

may be easily extended to include variables using the
technique outlined in [McAllester+Rosenblitt 91].

Definition 1:

 An

observation label

 is a unique identifier
associated with one of the outcomes of a plan step that has
multiple mutually-exclusive outcomes. An observation

label is

compatible

with another observation label when
the two labels are identical or when they come from differ-
ent sets of outcomes. We have been denoting observation
labels with small, subscripted greek letters (

α

3

,

β

2

,

γ

1

,
etc.). For example, if the greek letter denotes an observa-
tion, then the subscript would denote the specific result of
that observation.

α

x

 refers to the situation where x is the
specific outcome of the outcome set denoted by

α

. Note
that

α

x

is compatible with

α

y

 only when x = y.

α

x

is
always compatible with

β

y

 when

α

≠

β

 since these labels
refer to different observations.

Definition 2:

 A

context

is a set of observation labels.

A context summarizes a set of observations. When the

observations that have been made thus far match the
observations denoted by the context of a plan step then

that plan step may be executed. For example, if a plan step

contains a context

α

2

β

1

 then that plan step should only be
executed if observation event

α

 was observed to have

outcome 2 and observation event

β

 was observed to have

outcome 1. In our example, the operator (go c p) is
contingent on observing

¬

 (clear b s) and (clear c p),

denoted by

α

2

and

 β

1

 respectively. The idea of a context

seems similar in spirit to the idea of a

chronoset

[McDermott 82]. It is used to identify the possible future

that the plan step is a part of.

Observation labels are propagated from the contexts of a
plan step to the contexts of following plan steps using the

following rules. The context of a plan step, A, includes the

observation labels of a plan step, B, whenever there exists
a causal link of the form <B, X, A> or a conditioning link

of the form {B,

α

, A}. If B is a conditional plan step, then

A also includes the observation label corresponding to the
post condition X of step B. Additional observation labels

may be added to a context as long as they are compatible

with the labels already in the context. The

context of a

condition

 is the context derived by merging the context of

the plan step that establishes the condition with the

observation label (if any) associated with the condition
itself. This is simpler than it sounds. We are concerned

with labelling future branches of a ‘chronicle tree’-like

structure with events that occurred in the past [McDermott

82]. See Figure 3.

Figure 3:

Label propagation in the plan network.

Definition 3:

 A

descendent

of a step is a plan step that can
be reached by following causal links or conditioning links
forward in time. An

ancestor

of a step is a plan step that
can be reached by following causal links or conditioning
links backwards in time.

Definition 4:

 A

topological sort

of a plan graph is a linear
ordering of the steps in the graph that respects the tempo-
ral constraints denoted by the graph’s causal links, condi-
tioning links, and the ordering constraints.

Definition 5:

 Plan step A is

possibly after

a plan step B
when A is after B in at least one topological sort of the
plan graph. A is

possibly before

B when A is before B in at
least one topological sort of the plan graph. A is

possibly
between

plan steps B and C, if A is possibly after B and A
is possibly before C.

Definition 6:

 The

 kernel

of a proposition is the proposition
left over after all of the ’negation’ and ’unknown’ symbols
are stripped from it. |p| denotes the kernel of p. For any p, |

¬

 p| = |Unk(p)| = |p|.

Definition 7:

 A plan step C

clobbers

a causal link
<A, p, B> if

1. C is possibly between A and B.

2. The kernel of a postcondition of C, |q|, equals |p|
and p

≠

 q.

3. The context of C and B are compatible.

The three parts of this definition are worth some

discussion. A clobberer indicates that there is a condition
that possibly conflicts with a condition needed for the

execution of an action. In order to clobber a causal link,

the clobbering action must be able to occur between the

Past Future

α1 α1
α1

α1

α1

α2 α2

time that the establishing action of a causal link occurs and

the time that the consuming action occurs. Two conditions
are in conflict only when their kernels unify but their truth

values differ. SNLP [McAllester+Rosenblitt, 91] declares

that two conditions are in conflict whenever the kernels
unify even if the clobber condition is identical to the

condition that it clobbers. This is done in order to

guarantee systematic generation of partial plans. When we
tested our version of SNLP we discovered that the time

spent in planning dropped dramatically when we modified

the planner so that two conditions with identical kernels
and truth values are never in conflict. The overhead spent

exploring duplicate plans seems much smaller than the

overhead spent in declobbering ‘nonconflicting’
conditions.

Definition 8:

 An

open condition

is a pair <P, X> where P
is a precondition of a plan step X that is not established by
a causal link. That is, there is no causal link of the form
<A, R, X> where R unifies with P under the bindings of
the plan.

The planner works by eliminating conflicts in the plan
(eliminating clobberers) and by proving that the

preconditions of each plan step are true when that plan

step is executed (attaching causal links to open
conditions).

Definition 9:

 A conditional nonlinear plan is called

com-
plete

if the following conditions hold:

1) There are no clobberers, that is, no action clobbers a
causal link.

2) There are no open conditions. Every precondition of
every step in the plan is linked to an action that estab-
lishes it.

3) There exists a topological sort of the plan graph.

4) The contexts for the goals in the plan form a tautol-
ogy. The context of every postcondition in the plan
must be compatible with at least one of the goal opera-
tors.

6 Plan Construction Operations

The planning algorithm defined below attempts to make a
plan complete by incrementally and nondeterministically

repairing all of the sources of incompleteness. A plan can

be incomplete whenever it possesses a clobberer, an open
condition or there is an observation context that is not

compatible with the context of any of the goal operators.

6.1 Resolving Open Conditions.

In order to resolve an open condition, a causal link must be

established from a new plan step to the open condition or
from an existing plan step. The planner operations that do

this are called

add-step

 and

add-link

. Both of these

operators take an open condition <P, S>, a partial plan, and
a cost bound as arguments. Add-link requires the global

context, g-context, as an argument so that it may decide

which operators may be used to satisfy a subgoal of the
current goal. The global context prevents the planner from

linking the goal to conditional plan branches that have

already been expanded.

Add-Step(<P, S>, plan)

1) Nondeterministically select an operator, O, that pos-
sesses a postcondition that matches the unsatisfied pre-
condition, P. This is the new plan step, N.

2) Let new-plan be plan + N + <N, P, S> . That is, bind
new-plan to the partial plan constructed by adding step
N, and causal link <N, P, S> to the old plan. Update
the context of each of the descendents of N to include
the context of the condition P. If the new causal link
touches a goal node, add the goal node to the reason of
N. Return new-plan.

Add-Link(<P, S>, plan, g-context)

1) Nondeterminstically select a step O from plan that is
possibly before S, has a context that is compatible with
g-context and possesses a postcondition that unifies the
precondition P.

2) Let new-plan be plan + <O, P, S> . Update the con-
text of each of the descendents of S as in

Add-Step.

Update the reasons of O and each of the ancestors of O
so that they include the reasons of S. Return new-plan.

6.2 Resolving Clobberers

A clobberer can be resolved by attacking any one of the

necessary conditions for the clobberer to exist. These are:

restricting the clobberer to occur before or after the causal
link it clobberers, or restricting the contexts of the

clobberer and the link consumer so that they are

incompatible. In the following routines, X is the
clobbering action, <E, P, C> is the causal link that is

clobbered, and Q is the postcondition of X that is doing the

clobbering.

Promote(X, <E, P, C>, plan)

1) If C is not a goal and X is possibly after C, let new-
plan be plan + (X > C). Return new-plan.

Demote(X, <E, P, C>, plan)

1) If E is not IC, the plan step that contains the initial
conditions, and X is possibly before E, let new-plan be
plan + (X < E). Return new-plan.

Condition(X, <E, P, C>, plan)

1) Nondeterministically select a conditional plan step
A such that A is possibly before both X and C.

2) Nondeterministically select two of the observation
labels,

 α

i

 and

α

j

 of A such that i

≠

 j.

3) Let the context of A be C

A

. If C

A

∪ α

i

 is compatible
with the context of X and C

A

∪ α

j

 is compatible with
the context of C, then bind new-plan to
plan + {A,

α

i

, X} + {A,

α

j

, C}. Update the context of
X and the contexts of the descendents of X to include
C

A

∪ α

i

 and update the context of Y and the contexts of
the descendents of Y to include C

A

∪ α

j

. Return new-
plan.

6.3 The Top Level.

This is an auxiliary function to edit the plan when a goal

cannot be established with a plan that satisfies the current
cost bound.

Fail(Plan, Global-Context, Current-Goal)

Fail conditions a

Fail

action on the global-context and
links the

Fail

to the current goal. All actions that have

Current-Goal as their only reason are pruned from the

plan. The current-goal’s context is set to the global-context
and the resulting plan is returned.

The procedure Find-Conditional-Completion (F-C-C)

attempts to complete the plan by fixing flaws in it
nondeterministically. G-C is the global context. Goal is the

current goal attempt, and Bound is the cost bound. Note

that an attempt to plan for a goal is failed if the actions
required to accomplish that goal exceed the cost bound.

F-C-C(Plan, G-C, Goal, Bound)

1. If the cost of the portions of Plan that are consistent
with the global context exceeds the current cost bound,
then return

 F-C-C(Fail(Plan, G-C, Goal), G-C, Goal, Bound).

2. If the plan is complete then exit returning the plan.

3. If the postcondition Q of plan-step X in Plan clob-
bers a causal link <E, P, C> then bind new-plan nonde-
terministically to one of the following:

 a. Promote(X, <E, P, C>, Plan)

 b. Demote(X, <E, P, C>, Plan)

 c. Condition(X, <E, P, C>, Plan)

Return F-C-C(new-plan, G-C, Goal, Bound).

4. If there is an open condition <P, S> in the plan then
bind new-plan nondeterministically to one of the fol-
lowing:

 a. Add-Step(<P, S>, Plan)

 b. Add-Link(<P, S>, G-C, Plan)

Return F-C-C(new-plan, G-C, Goal, Bound).

5. Else, there is a post condition with a context, C

new

,
that is not compatible with the context of any goal.
Add a new goal step, G

new

, to the plan and

return F-C-C(Plan, C

new

, G

new

, Bound).

7 Discussion

We have described an algorithm to develop conditional

nonlinear plans. We are currently implementing the

algorithm to confirm that it does in fact work. We also still
need to assemble the proofs that show that the algorithm is

correct and complete.

There are several novel features of the planning approach
proposed. The approach proposed uses a labelling

technique similar to that used by an ATMS [DeKleer, 86]

in order to keep track of when actions are visible to other
actions. We have developed a notion of completeness for

conditional planning that does not require that the planner

be able to accomplish a goal in all possible circumstances.
Finally, we have introduced a new declobbering method

that is unique to conditional planning, the

condition

operator.

We believe that the CNLP algorithm will rarely be useful

on its own. The size and complexity of the plans generated

by CNLP increase exponentially with the number of
observation actions in the plan. The amount of

computation may be reduced by attaching a relative

likelihood measure to the various contexts in the plan. The
planner may elect to skip contexts that are sufficiently

unlikely, reducing the number of extensions that must be

explored by a significant amount. There are other

strategies that may be applicable for reducing the time

spent in planning such as the use of abstraction or dynamic
programming [Einav 91]. We view the development of

CNLP as the first step in the development of a decision-

theoretic nonlinear planner.

 Acknowledgments

The authors would like to thank Jack Breese and Ross
Shachter for their contributions to our work. We also thank

the anonymous reviewers for their comments and

criticism. This work is partially funded by DARPA
contract F30602-91-C-0031 and by the National Science

Foundation through a Graduate Fellowship.

 References

[Chapman, 87] Chapman, D. Planning for Conjunctive

Goals,

Artificial Intelligence

32

, pp 333-377.

[de Kleer, 86] de Kleer, J. An Assumption-based TMS,

Artificial Intelligence

28

, pp 127-162.

[Einav, 91] Einav, D., Reasoning with Uncertainty and
Resource Constraints, PhD Dissertation, Department of

Engineering-Economic Systems, Stanford University,

1991.

[Fikes+Nilsson, 71] Fikes, R. E. and Nilsson, N. J.

STRIPS: A New Approach to the Application of Theorem

Proving to Problem Solving,

Artificial Intelligence

2

(3/4),
pp 189-208.

[Howard, 66] Howard, R. E., Information value theory,

IEEE Transactions on Systems Science and Cybernetics,

vol. SSC-2, pp. 22-26, 1966.

[McAllester+Rosenblitt, 91] McAllister, D. and

Rosenblitt, D. Systematic Nonlinear Planning,

Proceedings of AAAI-91

, Anaheim.

[Schoppers, 89] Schoppers, M. E.,

Representation and

Automatic Synthesis of Reaction Plans

, Report No.89-
1546, Department of Computer Science, University of

Illinois at Urbana-Campaign, 1989.

[Soderland+Weld, 91] Soderland, S. and Weld, D. S.,
Evaluating Nonlinear Planning, Technical Report 91-02-

03, Department of Computer Science and Engineering,

University of Washington.

[Waldinger, 77] Waldinger, R. J., Achieving Several Goals

Simultaneously,

Machine Intelligence 8

, Chichester: Ellis
Norwood Limited.

[Warren, 76] Warren, D. H. D., Generating Conditional

Plans and Programs, in

Proceedings of the Summer

Conference on AI and Simulation of Behavior

, Edinburgh,

1976.

[Warren, 74] Warren, D. H. D., Warplan: A System for
Generating Plans, in Allen, J., Hendler, J, and Tate, A. eds,

Readings in Planning

, San Mateo, California: Morgan

Kaufmann, 1990.

